Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Single-Cell ATAC-Seq Cluster Analysis

Single-Cell ATAC-Seq Cluster Analysis Clusters cells by similarity of chromatin accessibility data from the outputs of the “Single-Cell ATAC-Seq Dimensionality Reduction Analysis” pipeline. The results of this workflow are used in the “Single-Cell Manual Cell Type Assignment”, “Single-Cell ATAC-Seq Differential Accessibility Analysis”, and “Single-Cell ATAC-Seq Genome Coverage” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-atac-cluster.cwl

Branch/Commit ID: 1f68f6aa0d71d8f90a7ae37a1c7db4580e199b68

workflow graph WGS and MT analysis for fastq files

rna / protein - qc, preprocess, filter, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/wgs-noscreen-fasta.workflow.cwl

Branch/Commit ID: 2addcde0f4c1c8547f7f3906c2523cded23e9869

workflow graph GSEApy - Gene Set Enrichment Analysis in Python

GSEAPY: Gene Set Enrichment Analysis in Python ============================================== Gene Set Enrichment Analysis is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). GSEA requires as input an expression dataset, which contains expression profiles for multiple samples. While the software supports multiple input file formats for these datasets, the tab-delimited GCT format is the most common. The first column of the GCT file contains feature identifiers (gene ids or symbols in the case of data derived from RNA-Seq experiments). The second column contains a description of the feature; this column is ignored by GSEA and may be filled with “NA”s. Subsequent columns contain the expression values for each feature, with one sample's expression value per column. It is important to note that there are no hard and fast rules regarding how a GCT file's expression values are derived. The important point is that they are comparable to one another across features within a sample and comparable to one another across samples. Tools such as DESeq2 can be made to produce properly normalized data (normalized counts) which are compatible with GSEA. Documents ============================================== - GSEA Home Page: https://www.gsea-msigdb.org/gsea/index.jsp - Results Interpretation: https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Interpreting_GSEA_Results - GSEA User Guide: https://gseapy.readthedocs.io/en/latest/faq.html - GSEAPY Docs: https://gseapy.readthedocs.io/en/latest/introduction.html References ============================================== - Subramanian, Tamayo, et al. (2005, PNAS), https://www.pnas.org/content/102/43/15545 - Mootha, Lindgren, et al. (2003, Nature Genetics), http://www.nature.com/ng/journal/v34/n3/abs/ng1180.html - Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 128(14). - Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016; gkw377 . - Xie Z, Bailey A, Kuleshov MV, Clarke DJB., Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, & Ma’ayan A. Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. 2021. doi: 10.1002/cpz1.90

https://github.com/datirium/workflows.git

Path: workflows/gseapy.cwl

Branch/Commit ID: 1f68f6aa0d71d8f90a7ae37a1c7db4580e199b68

workflow graph scatter-valuefrom-wf5.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-valuefrom-wf5.cwl

Branch/Commit ID: c7c97715b400ff2194aa29fc211d3401cea3a9bf

workflow graph kmer_build_tree

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_build_tree.cwl

Branch/Commit ID: 008a090fb1938fbb393494ac8fcb219f0d9f5295

workflow graph ani_top_n

https://github.com/ncbi/pgap.git

Path: task_types/tt_ani_top_n.cwl

Branch/Commit ID: 8a8fffb78b1e327ba0da51840ac8acc0c218d611

workflow graph blastp_wnode_naming

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_naming.cwl

Branch/Commit ID: 68b828ac482956a03325623d817780986f34fb31

workflow graph scatter-valuefrom-wf6.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-valuefrom-wf6.cwl

Branch/Commit ID: 1f3ef888d9ef2306c828065c460c1800604f0de4

workflow graph scatter-valuefrom-wf5.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf5.cwl

Branch/Commit ID: 2256a30d0c1365b30e0a7338fb883c74674fcd25

workflow graph gp_makeblastdb

https://github.com/ncbi/pgap.git

Path: progs/gp_makeblastdb.cwl

Branch/Commit ID: 68b828ac482956a03325623d817780986f34fb31