Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Cell Ranger ARC Count Gene Expression + ATAC

Cell Ranger ARC Count Gene Expression + ATAC ============================================

https://github.com/datirium/workflows.git

Path: workflows/cellranger-arc-count.cwl

Branch/Commit ID: b1a5dabeeeb9079b30b2871edd9c9034a1e00c1c

workflow graph chipseq-pe.cwl

Runs ChIP-Seq BioWardrobe basic analysis with paired-end input data files.

https://github.com/Barski-lab/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: 64e85970dbecba89c3380ab285c108d221e76fe6

workflow graph bam_filtering

BAM filtering

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/abstract_operations/subworkflows/bam_filtering.cwl

Branch/Commit ID: 82e533a98a763a258bd841ed0032c79445478d56

workflow graph ChIP-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-se.cwl

Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22

workflow graph somatic_subpipeline.cwl

https://github.com/PMCC-BioinformaticsCore/janis-pipelines.git

Path: janis_pipelines/wgs_somatic/cwl/tools/somatic_subpipeline.cwl

Branch/Commit ID: d919f2dd335da64a4fa352df9ea1b27ba13edad8

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: 9bf0aa495735f8081bb5870cb32fc898b9e6eb22

workflow graph kfdrc_process_bam.cwl

https://github.com/kids-first/kf-alignment-workflow.git

Path: subworkflows/kfdrc_process_bam.cwl

Branch/Commit ID: d822501de724a7c8ecf49a2d9f15fbb62029afd1

workflow graph RNA-Seq pipeline single-read stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: e99e80a2c19682d59947bde04a892d7b6d90091c

workflow graph Find reads with predicted coding sequences above 60 AA in length

https://github.com/proteinswebteam/ebi-metagenomics-cwl.git

Path: workflows/orf_prediction.cwl

Branch/Commit ID: 5dc7c5ca618a248a99bd4bf5f3042cdb21947193

workflow graph samtools_view_sam2bam

https://gitlab.bsc.es/lrodrig1/structuralvariants_poc.git

Path: structuralvariants/cwl/abstract_operations/subworkflows/samtools_view_sam2bam.cwl

Branch/Commit ID: 9ac2d150a57d1996210ed6a44dd0c0404dab383c